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1 ABSTRACT 

 

Rainfall is one of the most important factors in agricultural water management, especially to  

land farming of Paraná. Regionalization of rainfall data is useful for optimum design of 

projects and management of water related activities. Therefore, the objectives of this study 

were to evaluate the potential of multivariate clustering methodologies to identify 

homogenous regions using time series of monthly precipitation as the classification variable;  

the quality of the formed regions and estimate  precipitation quantiles.   k-means,   

hierarchical and hybrid clustering techniques were used. The rainfall stations in  each group 

were subjected to  metrics of homogeneity.  The Paraná state could be subdivided into six 

homogeneous regions of monthly precipitation   using the hybrid methodology between k-

means and Ward.   
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2 RESUMO 

 

A chuva é um dos fatores mais importantes na gestão da água na agricultura, especialmente 

para o estado do Paraná-BR. A regionalização de dados de chuva é útil para otimização de 

projetos e gestão das atividades relacionadas com a água. Portanto, este estudo teve por 

objetivo avaliar as metodologias multivariadas de agrupamentos para identificar regiões 

homogêneas usando as séries históricas de precipitação mensal como variável classificatória, 

avaliar a qualidade das regiões formadas e estimar quantis de precipitação. As técnicas de 
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agrupamento utilizadas foram: k-médias, hierárquico e híbrido. As estações pluviométricas 

presentes em cada grupo foram submetidas às métricas de homogeneidade e discordância. Foi 

possível subdividir o estado Paraná em seis regiões homogêneas de precipitação mensal 

utilizando a metodologia hibrida entre k-médias e Ward.  

 

Palavras-chave: Análise de frequência regional, momentos-L, análise de agrupamentos.  

 

 

3 INTRODUCTION 

 

Rainfall is one of the most important factors in agricultural water management, 

especially to the land farming of Paraná-BR. Regionalization of precipitation is useful for the 

optimum design and management of water related activities. 

The identification of a rainfall spatial pattern is usually an essential need for water 

resources planning and management. However, the rainfall fluctuation is usually difficult to 

be fully recognized from year to year and from place to place. Therefore, many present-day 

hydrologic and climatic studies are trying to find out and develop methods for the 

regionalization of hydrologic and climatic variables. Regional classification of these variables 

helps scientists to simplify the hydro-climatic convolution and therefore reduces the massive 

body of information, observation and variables (MODARRES and SARHADI, 2011).  

Regional frequency analysis (RFA) involves the use of multidisciplinary tools to 

estimate projected precipitation values in locations with no rainfall stations or to improve 

estimates based on observations from a station of interest. The necessary data for indirect 

estimates of rainfall are normally transferred to unmonitored locations from a set of similar 

basins through the process of regionalization. Regionalization identifies spatial units with 

common attributes and separates them from units that do not possess these attributes. If the 

identified units cover a continuous geographic area, the area is referred to as a region; the 

process of creating regions is called regionalization (CUNDERLIK and BURN, 2006).  

An important requisite for RFA is the identification of regions that can be used to 

transfer hydrological information. In this context, a region denotes a set of hydrographic 

basins that are similar in terms of their hydrological response. The objective of the 

regionalization process is to identify clusters of regions that are sufficiently similar to justify 

the combination and transfer of hydrological information from locations within the region.  

However, the simple determination of homogenous regions using classification 

methodologies does not guarantee homogeneity. To verify the homogeneity, Hosking and 

Wallis (1997) developed the discordancy measure and the test of heterogeneity.  

The application of clustering techniques to delineate homogenous regions is not 

automatic. Users must select (1) the most relevant variables for calculations of the distances 

between stations, (2) the link function, which strongly affects group formation, and (3) the 

segment distance in the hierarchical tree, which should reflect a user's objectives by 

identifying the optimal number of groups (OUARDA et al., 2008). 

Therefore, the objectives of this study were (1) to evaluate the potential of multivariate 

clustering methodologies in identifying homogenous regions using monthly historical series 

as the classification variable in the state of Paraná, (2) to evaluate the quality of the formed 

regions, and (3) to estimate precipitation quantiles.  
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4 MATERIALS AND METHODS 

 

4.1 Study area  

 

The area chosen for this study is Paraná State in southern Brazil. Its area is about 

200.00 km2 and it lies approximately between 22º31’ and 26º43’ latitude S and between 

48º06’ and 54º37’ longitude W Gr. 

The Paraná’s climate is subtropical (with mild temperatures), but a small part of its 

territory has a tropical climate. Annual thermal amplitude is 13ºC, except for the coast, which 

is 9ºC. According to Köppen classification, it predominates type C climate (mesothermal) and 

secondly the type A climate (tropical rainy). Annual rainfall lies between 1200 and 1600mm, 

approximately, except on the coast that can reach 2500 mm. It does not show a well-defined 

dry season. 

 

4.2 Data  

 

In total, 227 rainfall stations were used. Data from these stations were obtained at the 

National Water Agency (Agência Nacional de Águas - ANA) through the HIDROWEB 

information system. The stations were selected according to the following criteria: (1) must 

have data for the period from 1976 to 2006, (2) must be missing less than 18 values, and (3) 

must have no more than four consecutive missing values. These criteria helped to identify 

stations with the same series size and a limited number of missing values. The clustering 

methodologies were used with data from these stations to obtain homogenous rainfall series 

that could be described by the same probability distribution. A matrix was created with 227 

rows and 372 columns; the rows represented the rainfall stations and the columns represented 

the monthly rainfall.  

 

4.3 Data verification, Identification, Selection, Estimation & Evaluation 

 

The procedure used in this study was based on the methodology proposed by Hosking 

and Wallis (1997) and included four stages: 

1. Verification of the quality of monthly rainfall data, 

2. Identification of homogenous regions, 

3. Selection of a regional distribution function,  

4. Estimation and evaluation of regional quantiles. 

 

Step 1: Verification of quality 

A considerable effort was applied to screen and to verify the quality of the rainfall 

data, with the goal of eliminating false values associated with numerous and variable 

measurement, reading, and transcription errors.  

 

Step 2: Formation of homogenous groups 

 

2.1 Cluster analysis   

 

 The data from each station were transformed to fit within the interval [0,1]. The 

transformation was necessary because of differences in the variance, magnitude, and relative 

significance of the data (RAO and SRINIVAS, 2006a).  
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where: ijx , denotes the transformed element; y , is the data matrix; i , is the row; and j , is the 

column. 

 Let ijx  and kjx  denote transformed observations of stations i and k 

( 227,,2,1  ki ), referring to jth observation (j = 1, 2,…, 372), the Euclidean distance 

between stations was evaluated by Eq. (2) 

 

   



372

1

2
,

j

kjij xxkid                    (2) 

 

When Eq. (2) is used, the matrix of euclidean distances is obtained among ix  stations, 

with dimension 227x227 and zero diagonal. 

Hierarchical clustering is a way to sort and group data by creating a “cluster tree”. The 

tree is not a single set of clusters, but a multi-level hierarchy, in which clusters at one level are 

joined as clusters at the next higher level (CORTÉS et al., 2007).  

At the beginning of the process, each station is equivalent to a group. According to the 

following steps, the two nearest groups (or stations) are combined into a new group, so, there 

is a reduction on the number of groups in a unit at each step. Eventually, all the stations are 

clustered into a large group. The hierarchical algorithms differ in the way distance between 

groups of stations is computed. 

Single linkage is based on a hierarchy built using the smallest Euclidean distance 

between one of the stations within one cluster to one of the stations in adjacent clusters. 

Complete linkage is used to build up the cluster hierarchy and consists of finding the proxy of 

a cluster, based on finding the station within the cluster which shows the largest Euclidean 

distance between itself and its nearest surrounding cluster. Average linkage uses the average 

Euclidean distance between all pairs of stations in clusters a and b (CORTÉS et al., 2007): 
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In which  bad ,  is the Euclidean distance between cluster a and cluster b; an , the number of 

stations in cluster a; bn , the number of stations in cluster b; and,  ji bad , , the Euclidean 

distance between stations from cluster a and from cluster b. 

 In a centroid linkage, the distance between two clusters is the distance between the 

cluster centroids or means. Firstly, a and b groups (or stations) with the shortest Euclidean 

distance are grouped, then the matrix of distances is updated by using equation (4). 
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where  acd 2 ,  bcd 2

 and  abd 2  are quadratic Euclidean distances between the respective 

groups and cn is the number of stations is group c.  

The Ward method uses the incremental sum of squares or the increase in the internal 

sum of squares arising from the junction of two groups. The Ward procedure aims at joining 

groups without drastically increasing the variation among them, thereby, it produces the most 

homogenous groups. This technique also separates stations into regions with almost the same 

size. This ensures that each group has the minimum number of stations to enable the 

application of the appropriate regional estimate technique (OUARDA et al., 2008). The 

distance between clusters is given by Eq. (5): 
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where:  ba zzd ,2  represents the quadratic Euclidean distance between centroids of a and b 

groups. 

Partitioned clustering algorithms divide datasets into groups, often through the 

minimization of some criterion or error function. The number of groups is typically 

predefined, but it can be part of an error function. The k-means procedure is a partitioned 

algorithm based on the squared error criterion. The general objective of this method is to 

obtain a partition in which the squared errors are minimized for a fixed number of groups 

(GARCÍA and GONZÁLEZ, 2004). 
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In Eq. (6),  2d  denotes the quadratic Euclidian distance; K denotes the number of 

clusters; N represents the number of stations in cluster k; k

ijx  denotes the rescaled value j in 

the station i assigned to cluster k; k

jx is the mean value of month j for cluster k, using Eq. (7): 
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In this study, a hybrid of k-means and hierarchical clustering techniques were used. 

Thus, results from the hierarchical clustering algorithms are used to provide initial cluster 

centers for the k-means (RAO and SRINIVAS, 2006a). Clustering, in two stages, avoids 

subjective decisions and identifies a unique solution through iterations and classifications 

(CHENG and LIAO, 2009).   

 

2.2 Validation of the clusters 

 

 The cophenetic correlation coefficient (CCC) is used to measure the degree to which a 

hierarchical structure of a dendrogram represents the multidimensional relationships of the 

input data in two dimensions (RAO and SRINIVAS, 2006b). The cophenetic correlation 
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measures the degree of fit between the original dissimilarity matrix and the matrix that results 

from clustering. This correlation is equivalent to the Pearson’s correlation between the 

original dissimilarity matrix and the matrix obtained after the construction of a dendrogram. 

Thus, values closer to 1 indicate less distortion from the clustering of individuals (BEAVER 

and PALAZOĞLU, 2006).  

 In the Davies-Bouldin index, a good partition yields groups with high values for the 

separation between classes and the density of classes. The index is a function of the ratio 

between the sum of the inter-class dispersion and the between-class separation (equation (8)). 
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Where: K is the number of groups;
 
S , the average distance of all stations in cluster to 

the centroid of group; and  
ji zzd , , the Euclidean distance between the centers of groups. The 

Davies-Bouldin index yields low values for good clusters, thereby denoting compact and 

well-separated groups. 

The Dunn index identifies sets of groups that are compact and well-separated. 
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Where:  
ji CC ,  represents the Euclidean distance between clusters 

iC  and jC  

calculated in equation (10), and  kC  represents the diameter of group kC  given in equation 

(11). The value for which D  is maximized is taken as the ideal number of clusters. 
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where  
ji xxd ,

 
is the Euclidean distance between stations ix  and jx .  

 

2.3 Measurement of heterogeneity 

 

Measurements of heterogeneity Hn (n=1,2,3) are used to assess the spatial 

homogeneity of regions with the same underlying distribution and different local scale factors 

(HOSKING and WALLIS, 1997). The observed dispersions and the simulated L-moments for 

a given group of stations are used in this process. A region is considered to be “acceptably 

homogeneous” if Hn≤1, “possibly heterogeneous” if 1<Hn<2, and “definitely heterogeneous” 

if Hn>2. Large positive values of H1 indicate that the observed L-moments are more 

dispersed than the values predicted by the homogeneity hypothesis. H2 measures the 

similarity between local and regional estimates, and large H2 values indicate large deviations 

between local and regional estimates. H3 indicates the alignment of regional and local 
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estimates. H1 is the main measurement of heterogeneity because H2 and H3 rarely produce 

values greater than 2, even for roughly heterogeneous regions (HOSKING and WALLIS, 

1997; YANG et al., 2010; NGONGONDO et al., 2011). Details for the calculations of Hn 

measurements are presented in Hosking and Wallis (1997). 

 

2.4 Verification of the quality of groups 

 

The discordancy measure (Di) from Hosking and Wallis (1997) was used as a quality-

control tool to identify the stations for which the sample L-moments were significantly 

different from the pattern observed in the other locations of a region. 

Outlier stations were removed from the group, and the measurements of heterogeneity 

and discordancy were recalculated. This procedure was repeated until no outlier stations were 

observed. 

 

Step 3: Selection of the regional frequency distribution 

 

When analyzing a large geographical area that has been divided into various 

homogeneous regions, specifying the frequency distribution of a region can affect the 

distributions of other regions. If a particular distribution fits well with the data of the majority 

of the regions, this distribution can be used for all regions, even though this distribution may 

not produce the best fit for data from one or more regions. In these cases, instead of using a 

probabilistic model with three parameters, either a Kappa distribution with four parameters or 

a Wakeby distribution with five parameters can be selected, and both are more robust against 

incorrect specifications of regional frequency curves (HOSKING and WALLIS, 1997) 

Some advantages of using Wakeby distribution are pointed out by Hosking and Wallis 

(1997): (i) it can mimic the shapes of many commonly used skew distributions (e.g., extreme-

value, Log-Normal, Pearson type III); (ii) there is a heavy upper tail and it can give rise to 

data sets containing occasional high outliers.  

 

Step 4: Estimates of regional quantiles 

 

At the index-flood method, if  Fq  is the dimensionless T-year monthly precipitation 

value estimated for the homogeneous region with N  sites, and i  is the index flood for site i, 

then the estimate of the T-year event at-site i,  FQi , can be described by Saf (2010) 

(equation (12)): 
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In this study, i  is supposed to be the mean of monthly rainfall at-site frequency 

distribution, and  Fq  is the regional monthly quantile of non-exceeding probability F. The 

sample mean at-site i estimates that a given month is 31ˆ
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Hosking and Wallis (1997) appraised an index-flood method in which the parameters 

are individually estimated at each site and suggested using a weighted average of the at-site 

estimates. So, in this study, the stations have the same amount of data: 
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Where N  is the number of stations, 
i

k̂  is the L-moment of interest. Substituting these 

estimates into  Fq  produces the estimated regional quantile    R

p

RFqFq  ,,; 1  . 

 

 

5 RESULTS AND DISCUSSION 

 

5.1 Formation of homogenous groups 

 

5.1.1 Hierarchical algorithms 

 

As shown in Table 1, for the Simple, Complete, and Average connection 

methodologies, the cophenetic coefficients were greater than 0,7, which indicates that these 

methods produce less distortion in the distance matrix than the other approaches.  

 

Table 1. Cophenetic correlation coefficient of clustering hierarchical methodologies 

Method Cophenetic correlation coefficient 

Centroid 0,65 

Simple 0,71 

Complete 0,75 

Average 0,80 

Ward 0,55 

 

The Ward and Centroid methods showed the worst performance, which indicates that 

these approaches increase the distortion of the distance matrix in each step of the algorithm, 

especially in the first step. 

As shown in Figure 1, the Simple, Centroid, and Ward methodologies display 

monotonicity in the objective function (Eq. 6), which makes locating the local minima 

difficult. In contrast, the Complete and Average methodologies yield easily identifiable 

oscillations that facilitate the localization of local minima. Despite these results, the Simple, 

Centroid, Average, and Complete linking methodologies do not produce similarly sized and 

high-quality groups for subsequent uses because they are sensitive to atypical values 

associated with months with extreme precipitation values. Rao and Srinivas (2006b) found 

that the simple linking methodology tended to form one large group and various small groups, 

and they concluded that the cophenetic coefficient inefficiently identifies the number of 

groups.  

The Ward methodology yielded the best results. At each step, the algorithm divided 

the groups with the greatest number of stations, thereby creating more homogenous groups of 

a quality suitable for subsequent analyses. The analysis of the relevance of the number of 

groups was performed using this method alone, Figure 2. 
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Figure 1. Graph of the objective function for the hierarchical clustering methodologies 

 
Figure 2. Dunn and Davies-Bouldin Indices as function of the number of groups 

 
For the Dunn index, the ideal partition was easily identifiable. In this case, the value 

was six because the index was at a global maximum at this point. The Davies-Bouldin index 

yielded a global minimum for two clusters and a local minimum at six clusters; however, two 

groups did not produce selections with a large number of stations. These selections were 

therefore not useful for hydrological regionalization.  

 

5.1.2 K-means algorithm 

 

The objective function (Figure 3 and Eq. 6) behaviors of the hybrid Centroid, Simple, 

Complete, and Average methods were similar. The hybrid Ward and k-means method 

produced the lowest values for the objective function, independent of the number of groups; 

in addition, the curves overlapped and visibly indicated monotonicity. A comparison of the 

hybrid Centroid, Simple, and Average methodologies with the hierarchical algorithms 

revealed a sensitive reduction in the objective function. For the hybrid Ward and Complete 

methodologies, no substantial reduction in the objective function was observed compared 

with the hierarchical algorithms. The groups and objective functions of the k-means, hybrid 

Ward, and hierarchical Ward methods were similar. In contrast, the other hierarchical 

methodologies were significantly affected by the k-means method (i.e., the hybrid algorithm). 

This conclusion is similar to that of Rao and Srinivas (2006b). 

Only the k-means and hybrid Ward methodologies were used to evaluate the 

pertinence of the number of groups, as they did not display a tendency to form groups with 

less than five stations, which is necessary when calculating the discordancy measure. 
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The Dunn index varied (Figure 5) the most between 5 and 6 groups and that its global 

maximum appeared between 10 and 13 groups. The Davies-Bouldin index had a global 

minimum for two groups and a local minimum for six groups, and the global maximum 

appeared with 5 groups. Thus, the indices show that six groups produced the best partition for 

the hybrid Ward method. 

 

Figure 3. Objective functions for k-means methodology and its hybrids forms 

 
  

Figure 4. Dunn and Davies-Bouldin indices as functions of the number of groups for the 

hybrid Ward methodology 

 
  

 In Figure 5, the Dunn index has a global maximum with seven groups, whereas the 

Davies-Bouldin index has a global minimum for two groups and a local minimum for five 

groups. In addition, it has a global maximum with nine groups. For the k-means methodology, 

the indices did not corroborate for the same number of groups; thus, the three solutions were 

checked. This is because the k-means method uses random seeds to clustering.  
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Figure 5. Dunn and Davies-Bouldin indices as functions of the number of groups for k-means 

methodology 

 
 

5.2 Tests for discordancy and heterogeneity 

 

Five solutions were obtained: one for the hierarchical Ward method, one for its hybrid 

form, and three for the k-means method. Five, six, seven, and nine groups were obtained as 

the ideal partitions. Each group was tested for heterogeneity and discordancy. The tests were 

conducted with 372 records for all series, and no data were preferred for any specific period.  

 

5.2.1 Hierarchical algorithms  

 

Table 2 shows the six outlier stations; less than 3% of the stations were outliers. 

Groups three and six did not contain outlier stations. Following the discordancy test, the 

groups were tested for heterogeneity, as shown in Table 2, groups 1, 3, and 6 can be 

considered to be homogenous, whereas group 4 can be considered to be acceptably 

homogenous according to the heterogeneity measure. Groups 2 and 5 should be considered to 

be definitely heterogeneous. 

 

Table 2. Discordancy and heterogeneity tests for solution with six groups obtained by 

hierarchical Ward algorithm 

Group N 
Outlier 

station (ID) 
D H1 Implication of H1 test 

1 30 
x38 3,11 

1,89 possibly heterogeneous 
x102 3,18 

2 82 x109 6,24 4,10 definitely heterogeneous 

3 36 - - 1,89 possibly heterogeneous 

4 25 x212 3,24 0,39 acceptably homogeneous 

5 49 
x182 4,03 

5,39 definitely heterogeneous 
x196 6,71 

6 5 - - 1,21 possibly heterogeneous 

 

Saf (2010) indicated that outlier stations are the main source of errors in 

regionalization. Thus, to evaluate the performance improvement in the heterogeneity 

measurements, the outlier stations were removed, and new discordancy and heterogeneity 

tests were performed to yield new outlier stations. The procedure was repeated until outlier 

stations were no longer obtained, Table 3.  
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Table 3. Outlier stations and heterogeneity measurement for hierarchical Ward methodology 

with six groups 

Group 
Outlier 

Station (ID) 
D H1 Implication of H1 test 

Implication of outlier 

station 

1 
x103 3,45 -0,12 acceptably homogeneous remove 

- - -0,11 acceptably homogeneous do not remove 

2 

x77 3,55 
4,08 definitely heterogeneous remove 

x49 3,07 

- - 4,10 definitely heterogeneous do not remove 

4 
x106 3,29 -0,65 acceptably homogeneous remove 

- - -0,75 acceptably homogeneous do not remove 

5 
x195 3,37 1,07 possibly heterogeneous remove 

- - 0,14 acceptably homogeneous do not remove 
Note: Group 6 was not evaluated again because it had the minimum number of stations in discordancy measure, as indicated 

by Hosking and Wallis (1997). N – Number of stations,  ID – Identifier, D – Discordancy measure, H1 – heterogeneity 

measure 

 

A considerable improvement was observed in the heterogeneity measurements, except 

for group 2, even after the outlier stations were removed. Groups 1, 3, and 6 changed from 

possibly homogenous (Table 2) to acceptably homogenous (Table 3). Group 5 showed the 

largest effect upon removal of the outlier stations; with the removal of these stations, the 

group changed from definitely heterogeneous (Table 2) to acceptably homogenous (Table 3). 

Approximately 5% of the studied stations were removed.  

For group 2, no improvements in the performance of the heterogeneity measurement 

were observed. This result may be attributed to the group’s size. To solve this problem, the 

stations in this group were classified using the Ward method into two groups. After this 

division, the stations were again subjected to tests of discordancy and heterogeneity (Table 4).  

 

Table 4. Outlier stations and heterogeneity measurement for subdivisions of group 2 obtained 

by hierarchical Ward methodology with six groups 

Group N 
Outlier 

station (ID) 
D H1 Implication of H1 test 

2a 39 - - 0,22 acceptably homogeneous 

2b 40 - - 1,44 possibly heterogeneous 
N – Number of stations, ID – Identifier, D – Discordancy measure, H1 – heterogeneity measure 

 

Outlier stations were not found in the subdivision of group 2. Group 2a was classified 

as acceptably homogenous, whereas group 2b was classified as possibly homogenous. Thus, 

the subdivision of group 2 revealed two groups that were suitable for hydrological 

regionalization. This result is in agreement with Cannarozzo et al. (2009), who showed that 

even after the elimination of all outlier stations, homogeneity was not obtained, thus 

necessitating reclassification to obtain homogeneity.  

 

5.2.2 K-means algorithm 

 

For the k-means algorithm, the solutions were tested with seven and nine groups. With 

five groups, homogenous groups could not be formed by the removal of the outlier stations 

because one of the groups had 90 stations. Subdivision of such a group would have been 

required to obtain homogeneity, as demonstrated for Ward’s hierarchical methodology.  
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Table 5. Outlier stations and heterogeneity measurement for solution with seven groups 

obtained by the k-means 

Group N 
Outlier 

Station (ID) 
D H1 Implication of H1 test 

Implication of outlier 

station 

1 
47 

x38 3,97 

2,64 definitely heterogeneous remove 
x46 3,15 

x102 3,47 

x103 3,20 

43 - - 0,74 acceptably homogeneous do not remove 

2 
18 x117 3,10 0,34 acceptably homogeneous remove 

17 - - -1,18 acceptably homogeneous do not remove 

3 
18 x109 4,58 0,17 acceptably homogeneous remove 

17 - - 0,06 acceptably homogeneous do not remove 

4 

23 x212 3,02 0,64 acceptably homogeneous remove 

22 x106 3,01 -0,40 acceptably homogeneous remove 

21 - - -0,53 acceptably homogeneous do not remove 

5 28 - - 0,85 acceptably homogeneous do not remove 

6 
46 

x182 4,11 
4,74 definitely heterogeneous remove 

x196 7,03 

44 - - -0,30 acceptably homogeneous do not remove 

7 5 - - 1,21 possibly heterogeneous do not remove 
N – Number of stations, ID – Identifier, D – Discordancy measure, H1 – heterogeneity measure 

 

As shown in Table 5, ten stations were removed, representing less than 5% of the total 

of 227 stations. Initially, groups 2, 3, 4, and 5 were classified as acceptably homogenous and 

thus remained after the removal of the outlier stations. However, for group 5, the 

measurement of heterogeneity became too negative. For groups 1 and 6, which were initially 

classified as definitely heterogeneous, a significant improvement in the heterogeneity 

measurement was observed following the removal of the outlier stations, and the classification 

was acceptably homogenous. Group 7 did not contain outlier stations and was classified as 

possibly homogenous.  

 

Table 6. Outlier stations and heterogeneity measurement for solution with nine groups 

obtained by the k-means 

Group N 
Outlier 

Station (ID) 
D H1 Implication of H1 test 

Implication of outlier 

station 

1 
38 x38 3,76 1,83 possibly heterogeneous remove 

37 - - 0,89 acceptably homogeneous do not remove 

2 
31 x76 3,08 -0,33 acceptably homogeneous remove 

30 - - -0,56 acceptably homogeneous do not remove 

3 29 - - -0,43 acceptably homogeneous do not remove 

4 21 - - -0,10 acceptably homogeneous do not remove 

5 

23 x212 3,02 0,64 acceptably homogeneous remove 

22 x106 3,01 -0,40 acceptably homogeneous remove 

21 - - -0,53 acceptably homogeneous do not remove 

6 

28 
x182 3,52 

4,32 definitely heterogeneous remove 
x196 4,76 

26 x195 3,24 -0,76 acceptably homogeneous remove 

25 - - -1,95 acceptably homogeneous do not remove 

7 
26 x109 4,27 -0,67 acceptably homogeneous remove 

25 - - -0,99 acceptably homogeneous do not remove 

8 5 - - 1,21 possibly heterogeneous do not remove 

9 26 - - -0,20 acceptably homogeneous do not remove 
N – Number of stations,  ID – Identifier, D – Discordancy measure, H1 – heterogeneity measure 
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5.2.3 Hybrid algorithm 

 

As shown in Table 7, to obtain homogenous groups, 13 stations were eliminated, 

representing approximately 6% of the stations. Initially, groups 2, 3, and 4 were classified as 

acceptably homogenous; group 1 was classified as possibly homogenous; and group 5 was 

classified as definitely heterogeneous. Following the removal of the outlier stations, groups 1 

and 5 became acceptably homogenous, and the heterogeneity measurements of these groups, 

especially group 5, improved significantly. For groups 2, 3, and 4, no significant 

improvements in the heterogeneity measurements were observed, as these groups were 

already classified as acceptably homogenous and thus remained after the removal of the 

outlier stations. Group 6 was classified as possibly homogenous. Outlier stations were not 

observed in this group. 

The stations x38, x106, x109, x182, x196, and x212 are (Table 8) outliers in all tested 

situations. Therefore, these stations are removed in subsequent analyses, as their elimination 

is independent of the clustering algorithm and the number of groups adopted.  

 

Table 7. Outlier stations and heterogeneity measurement for solution with six groups 

obtained by hybrid Ward algorithm 

Group N 

Outlier 

Station (ID) D H1 
Implication of H1 test 

Implication of outlier 

station 

1 
40 

x102 3,07 

, possibly heterogeneous remove  x103 3,05 

x38 3,89 

37 - - -0,09 acceptably homogeneous do not remove  

2 
58 x77 3,12 0,50 acceptably homogeneous remove  

57 - - 0,50 acceptably homogeneous do not remove 

3 

51 x109 6,06 0,32 acceptably homogeneous remove 

50 x124 3,01 0,30 acceptably homogeneous remove 

49 x107 3,02 0,20 acceptably homogeneous remove 

48 x54 3.],27 -0,31 acceptably homogeneous remove 

47 - - -0,33 acceptably homogeneous do not remove 

4 

23 x212 3,02 0,64 acceptably homogeneous remove 

22 x106 3,01 -0,40 acceptably homogeneous remove 

21 - - -0,53 acceptably homogeneous do not remove 

5 

50 
x182 4,16 

5,35 definitely heterogeneous remove 
x196 7,02 

48 x195 3,96 0,57 acceptably homogeneous remove 

47 - - -0,47 acceptably homogeneous do not remove 

6 5 - - 1,21 possibly heterogeneous do not remove 
N – Number of stations,  ID – Identifier, D – Discordancy measure, H1 – heterogeneity measure 
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Table 8. Outlier stations as function of clustering methodology and number of groups 

k-means Hybrid Ward 

k=9 k=7 k=6 k=6 

x38 x38 x38 x38 

 x102 x102 x102 

 x103 x103 x103 

x106 x106 x106 x106 

x109 x109 x109 x109 

x196 x196 x196 x196 

x212 x212 x212 x212 

x182 x182 x182 X182 

x195  x195 x195 

  x77 x77 

 x46 x54 x49 

 x117 x107  

x76  x124  
8 10 13 11 

k= number of groups 

 

5.3 Regional estimates of monthly precipitation 

 

 In RFA, rainfall estimates for locations with no data are often needed, as seen in Table 

9. In this study, values that represented entire homogenous regions were estimated. 

 

Figure 7. Delineation of the six homogenous regions 
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Table 9. Regional estimates of monthly rainfall (mm) 

Month 

Group 1 Group 2 Group 3 

Return period (years) Return period (years) Return period (years) 

2 5 10 20 50 100 2 5 10 20 50 100 2 5 10 20 50 100 

Jan 182 296 367 427 492 533 168 266 326 374 426 457 180 268 321 367 421 456 

Feb 152 235 283 320 359 382 147 220 269 312 363 397 151 238 288 329 371 397 

Mar 117 178 221 264 322 366 116 173 211 247 291 322 115 184 230 272 319 351 

Apr 90 139 168 192 216 231 101 158 201 244 305 352 123 196 249 305 382 442 

May 92 180 233 277 323 352 100 212 289 358 440 496 143 285 368 435 504 545 

Jun 63 129 173 218 286 348 76 152 193 226 269 309 110 178 228 280 350 405 

Jul 43 91 124 156 195 222 51 87 112 140 183 222 82 145 187 227 278 313 

Aug 30 89 130 166 206 231 39 99 145 191 253 299 68 142 184 217 250 269 

Sep 112 168 198 227 269 306 119 197 243 283 330 360 147 228 279 327 389 435 

Oct 114 179 218 250 285 306 133 222 269 302 333 348 183 261 312 366 443 506 

Nov 120 184 229 272 326 364 123 195 242 284 331 362 156 227 280 335 408 466 

Dec 170 249 299 344 397 432 168 245 296 342 396 432 168 255 315 371 439 487 

Month 

Group 4 Group 5 Group 6 

Return period (years) Return period (years) Return period (years) 

2 5 10 20 50 100 2 5 10 20 50 100 2 5 10 20 50 100 

Jan 183 257 311 365 440 497 182 269 322 365 412 440 340 495 594 680 776 838 

Feb 151 213 252 287 329 359 172 265 315 357 401 429 310 444 508 552 589 607 

Mar 114 177 222 266 324 367 121 195 245 289 342 377 262 365 430 485 544 581 

Apr 83 124 155 189 236 275 135 208 267 332 425 503 158 244 295 336 379 405 

May 92 200 279 354 448 516 149 304 396 472 551 598 111 218 293 364 452 514 

Jun 94 148 185 226 285 335 145 225 273 315 360 389 95 159 203 244 294 329 

Jul 95 152 185 218 268 312 116 172 222 290 419 558 117 197 240 279 333 378 

Aug 65 121 153 181 215 239 93 172 211 243 287 329 78 133 173 212 263 300 

Sep 131 215 264 303 343 367 154 251 301 338 371 389 166 241 304 371 470 551 

Oct 142 217 256 286 313 328 210 315 383 442 508 550 183 251 301 352 417 466 

Nov 117 172 214 258 320 371 167 235 282 341 449 561 178 260 323 388 478 548 

Dec 148 214 252 283 316 335 168 247 299 347 405 444 219 341 432 521 635 720 

  

 

6 CONCLUSIONS 

 

The obtained answers in this study can state that the hybrid form between Ward 

algorithm and k-means showed the best results, since the removal of discordant stations 

allowed the generation of groups of homogenous stations regarding L-moments. 

Another important issue recorded in this trial was the effect of discordant stations on 

L-moments homogeneity according to the studied region as well as the number of stations that 

make part of the group. 

Finally, this study showed problems that can occur when there is a direct choice of the 

clustering method in RFA. 
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