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ABSTRACT: Brazil is the world's third-largest maize producer. Its yield is influenced by climate, 

soil conditions, management and their interactions. Identifying the most suitable sowing window and 

using yield forecasting systems allows for increased yields and better harvest management. Crop 

simulation models can be used to assess crop responses to various conditions. This study aimed to 

identify the most favorable planting date for off-season maize by using the DSSAT CSM-CERES-

Maize model for Jataí, Goiás state. Using meteorological data from 1986 to 2015, eight productivity 

forecasting strategies were tested. The results of the model application at different sowing dates 

indicated that the dates in January tended to present a more favorable attainable yield (Ya), i.e., values 

closer to the potential yield (Yp) of the crop, whereas in February, Ya were affected by lower 

precipitation from April to June. The best date for maize sowing was January 25th. The simulations 

indicated the possibility of predicting the off-season maize productivity in Jataí with high precision 

and accuracy up to 30 days prior to harvest (R² ≥ 0.81, d ≥ 0.90, and c ≥ 0.81). 

 

Keywords: climate risk, DSSAT, Zea mays. 

 

 

PREVISÃO DE PRODUTIVIDADE DO MILHO SAFRINHA PARA DIFERENTES DATAS 

DE SEMEADURA 

 

RESUMO: O Brasil é o terceiro maior produtor mundial de milho. Sua produtividade é influenciada 

pelas condições de clima, solo, manejo e pela interação entre eles. Identificar o posicionamento mais 

adequado da janela de semeadura do milho e utilizar sistemas de previsão permite maiores 

produtividades e uma melhor gestão da colheita. Modelos de simulação de cultura podem ser usados 

para avaliar a resposta das culturas à diferentes condições. Este trabalho visou identificar, usando o 

modelo DSSAT CSM-CERES-Maize, a data mais favorável à semeadura do milho safrinha, bem 

como adaptar e avaliar um sistema de previsão de produtividade em Jataí, Goiás. Usando dados 

meteorológicos de 1986 a 2015, foram testadas oito estratégias de previsão de produtividade. 

Concluiu-se que a semeadura em janeiro apresenta maior proximidade entre a produtividade atingível 

(PA) e a potencial (PP) da cultura, enquanto fevereiro é impactado pela menor precipitação de abril 

a junho. A melhor data para a semeadura do milho safrinha foi 25 de janeiro. As simulações indicaram 

ser possível prever com alta precisão e acurácia a produtividade do milho safrinha em Jataí, com até 

30 dias de antecedência à colheita (R² ≥ 0,81, d ≥ 0,90 e c ≥ 0,81). 

 

Palavras-chaves: risco climático, DSSAT, Zea mays. 
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1 INTRODUCTION 

 

Maize (Zea mays) is of great importance 

worldwide for human and animal consumption, 

and as a raw material for ethanol production. 

The United States is the largest producer of 

maize in the world, with approximately 384 

million tons, followed by China (~273 million 

tons) and Brazil (~88 million tons). The 

Midwest region of Brazil is the most important 

maize producer, with the state of Goiás (GO) 

being the largest producer in the region. The 

average maize production and productivity in 

GO are 8.4 million tons and 4.6 thousand kg ha-

1, respectively (Oliveira; Miranda; Cooke, 

2018; Faostat, 2023). 

The cultivation of maize for grain 

production is influenced by several factors, 

such as climate, soil, and management 

practices. Climate is particularly important in 

agricultural production and is considered a 

major risk factor in Brazilian agriculture. One 

of the management practices to increase 

productivity is the selection of an optimal 

sowing time, which has a significant impact on 

the productive potential of the crop, particularly 

in rainfed agriculture. Adjusting the sowing 

date to a more favorable time for a specific 

location is a cost-effective way for farmers to 

improve their yields (Bannayan; Crout; 

Hoogenboom, 2013; Andarzian et al., 2015; 

Duarte, 2018). 

Reductions in maize productivity occur 

due to the influence of climatic conditions, 

deficient nutrition, and a lack of pests and 

disease control. Among these, the influence of 

climate on crop productivity is the most 

difficult to manage. Generally, the amount and 

distribution of rainfall modulate productivity 

under rainfed conditions, since maize demands 

high availability of water for its development. 

Water stress negatively affects plant 

germination, particularly during seedling 

establishment. Moreover, water stress during 

the vegetative stage reduces the expansion of 

leaf area, thereby limiting the efficient 

interception of solar radiation by the crop 

canopy. The consequences extend to the 

reproductive and grain-filling stages, where 

water stress disrupts processes such as pollen 

fertility, resulting in infertility, grain abortion, 

and a reduction in grain weight (Bergamaschi et 

al., 2004; Araus; Serret; Edmeades, 2012; Gong 

et al., 2015; Schauberger et al., 2017; Garcia et 

al., 2018). 

Crop yield can be classified into three 

categories: potential (Yp), attainable (Ya), and 

actual (Yr) yields. The factors that determine 

Yp are genotype, solar radiation, temperature, 

photoperiod, and the plant population. Ya is 

related to the yield reduced by the water deficit, 

whereas Yr considers both the determinant and 

limiting factors of Ya and is further influenced 

by reducing factors related to management 

practices (Bindraban et al., 2000; Fermont et 

al., 2009; Sentelhas et al., 2015). 

Forecasting agricultural production is 

critical for harvest planning, storage, and 

marketing (Duarte, 2018), and helps farmers 

increase their efficiency. By forecasting the 

productivity of crops before harvest, farmers 

can plan for their transportation and storage, 

optimize their sales strategies, and reduce or 

avoid potential losses related to production. 

Yield losses can be determined using growth 

models and their software packages, such as 

DSSAT (Jones et al., 2003), which are 

worldwide used under different environmental 

conditions and management practices 

(Hoogenboom et al., 2019).  

The objective of this study was to 

identify the most favorable sowing date for off-

season maize using the CSM-CERES-Maize 

model based on productivity forecasting for 

conditions in Midwest Brazil. 

 

2 MATERIALS AND METHODS 

 

The simulations of growth and yield of 

maize off-season were carried out for Jataí, in 

the state of Goiás (17.91° S, 51.71° W), one of 

the main maize-producing municipalities in the 

Midwest of Brazil. The model used for the 

simulations in this study was the CSM-CERES-

Maize, in DSSAT version 4.7.5 (Jones et al., 

2003; Hoogenboom et al., 2019). A mid-cycle 

cultivar was used, previously calibrated for 

Brazilian conditions (Bender, 2017). 

Daily weather data were obtained from 

the gridded database of Xavier, King and 
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Scanlon (2016) for the period of 1986 to 2015 

(30 years), which has been shown to be suitable 

for process-based modeling purposes (Battisti; 

Bender; Sentelhas, 2019; Bender; Sentelhas, 

2018). Climate variables considered in this 

study were maximum and minimum air 

temperatures, global solar radiation, rainfall, 

wind speed, and relative humidity (Figure 1). 

The carbon dioxide concentration level for the 

historical series was set at 380 parts per million 

(ppm).

 

Figure 1. Monthly averages of maximum temperature, minimum temperature, global solar radiation 

and total rainfall, from 1986-2015, for Jataí, GO, Brazil. 

 
 

In this region, the rainy season is 

between September and April, with the heaviest 

amounts from November to March (over 200 

mm per month). Consequently, the periods of 

greater water deficit and less water storage in 

the soil coincide with the off-season maize 

growing period, which can extend until July, 

depending on the sowing season. In maize, 

water deficits during the flowering and grain-

filling stages cause production losses ranging 

from 20% to 50% (Pegorare et al., 2009). 

A sandy loam texture was considered 

for the simulations, since the soils at the study 

site were mainly latosols, cambisols, and 

neosols (Battisti; Sentelhas, 2017). The 

physical-hydraulic soil characteristics included 

in the model were soil water saturation, field 

capacity, permanent wilting point, soil density, 

and saturation conductivity (Table 1).

 

Table 1. Texture and physical-hydric characteristics of the sandy loam soil used for maize simulations 

in Jataí, GO, Brazil. 

Depth Cl Si S 
Soil water 

saturation 
CC PMP Soil density Ksat 

m % cm³ cm-³ Mg m-3 cm h-1 

0 - 0.15 19 2 79 0.387 0.13 0.07 1.55 15 

0.15 - 0.30 19 2 79 0.387 0.13 0.07 1.55 9.4 

0.30 - 2.0 19 2 79 0.343 0.13 0.07 1.70 15 
Cl: clay; Si: silt; S: sand; CC: field capacity; PMP: permanent wilting point; Ksat: saturated hydraulic conductivity. 

 

 

 

A planting density of 70,000 plants ha-1 

and emergence of 55,000 plants ha-1 were 

established, with row spacing of 80 cm and 

planting depth of 5 cm. Twelve sowing dates 

were selected at five-day intervals within the 

recommended sowing window. Harvest was 

specified to occur at plant maturity, which 

varied from year to year due to climatic 

variability. For the off-season maize 

simulations, management was defined to obtain 
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Ya of the cultivar for the region (Yp penalized 

by water deficit). That is, the model was 

adjusted to maintain optimal conditions for 

plant development, except for water limitation, 

which was simulated with local rainfall. 

To assess the effect of using daily 

climatic average data to predict the yield of the 

maize off-season, eight prediction strategies 

(S1, S2, S3, S4, S5, S6, S7 and S8) were 

considered and simulated using historical data 

only from the last 15, 30, 45, 60, 75, 90, 105 

and 120 days, compared to the control 

condition. In the control condition (S0), the 

productivity simulation was considered only 

with the daily meteorological data observed for 

each year. 

The performance of each prediction 

strategy was based on statistical analysis. The 

following statistical indicators were used: 

determination coefficient (R²), Willmott's 

concordance index (d) (Willmott, 1982), 

confidence or performance index (c) proposed 

by Camargo and Sentelhas (1997), mean error 

(ME), mean absolute error (MAE) and root 

mean square error (RMSE) proposed by 

Wallach et al. (2013), according to Equations 1 

to 6. 

 

R2 = 
∑ (Ei - O ̅̅ ̅)²

∑ (Oi - O ̅̅ ̅)²
                                     (1) 

 

d = 1 - [
∑ (Ei - Oi)²

∑ (|Ei - O ̅̅ ̅| + |Oi - O ̅̅ ̅|)²
]                        (2) 

 

c = d √R²                                                (3) 

 

ME = 
1

n
∑ (Ei - Oi)                                    (4) 

 

MAE = 
1

n
∑ |Ei - Oi|                                    (5) 

 

RMSE = 
1

n
√∑ (Ei - Oi)²                          (6) 

 

3 RESULTS AND DISCUSSION 

 

The best sowing date was January 25th 

(Figure 2), which had the highest Ya (8611 kg 

ha-1) and low variability. The mean Ya did not 

differ significantly when considering different 

sowing dates, ranging from 7460 to 8611 kg ha-

1. However, the amplitudes of the "boxplots" in 

the second half of February were higher, 

indicating a higher climatic risk for sowing 

dates during this period. In addition, there was 

an increasing downward shift in these values 

until their maximum values were lower than the 

minimum values of Yp. These results reflect the 

local climatology, with a decrease in the 

minimum temperature, in addition to a 

reduction in rainfall amount as the cycle 

progresses by increasing the water deficit, thus 

reducing the productivity achieved with the 

delay of sowing within the recommended 

sowing window.
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Figure 2. Boxplots of Potential (Yp) and Attainable (Ya) Yield of maize off-season in Jataí (GO), for 

sowing dates every five days. 

 
 

Maize cultivation follows a growing 

cycle of approximately 120 days, where sowing 

in January results in a harvest in May, whereas 

sowing in February leads to a harvest in June. 

Consequently, February sowings are subject to 

weather conditions that are less favorable to 

optimal productivity than those experienced in 

January. This observation highlights that 

sowing undertaken throughout January tends to 

exhibit Ya values that closely align with those 

of Yp. 

In general, better performance was 

observed in forecasting strategies that used 

fewer average historical data (Figure 3). 

Strategies S1 and S2, for forecasts 15 and 30 

days before harvest, respectively, presented the 

best performance in relation to S0. These 

findings support the observations of Soler 

(2004), who concluded that maize yield 

estimation remains highly accurate up to 45 

days before the scheduled harvest date.
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Figure 3. Variability and comparison of means of the eight strategies in relation to simulated yields 

with observed climatic data (S0) for Jataí, GO, Brazil. 

 
 

Strategy S3 showed the highest 

productivity values among all the strategies. 

Furthermore, the amplitude of variation of S3 

was almost twice as high as that of S0 (control). 

The worst productivity performance was 

observed for strategies S1 and S2. Strategies 

S4, S5, S6, and S7 showed a strong flattening 

of variability and amplitude due to the use of a 

high amount of average meteorological data, as 

also observed by Duarte (2018). These results 

differ from those of Martins (2007), who used 

the ETA climate forecast model combined with 

climate data from the years of their simulations 

and suggested that the maize yield forecast can 

be satisfactorily made between 45 and 60 days 

before harvest. 

The application of strategies based on 

average meteorological data spanning 60–105 

days of the maize crop cycle (representing 50–

87.5% of the available meteorological data) 

resulted in increased errors when predicting 

maize productivity in Jataí, GO. This can be 

attributed to the significant inter-annual 

variability characteristic of tropical regions. 

The utilization of the average values leads to the 

loss of a portion of this inherent variability. 

Consequently, the predicted annual 

productivity tended to converge across different 

years. The predicted average Ya increases in 

relation to the control productivity, as a greater 

number of days with average meteorological 

data are considered (lower water deficit in the 

growing cycle). 

The MAE ranged from 204.3 to 816.7 

kg ha-1 for the different forecasting strategies 

with sowing on January 25th, resulting in 

values of the "c" index ranging from 0 to 0.92 

(Table 2). The S8 strategy resulted in higher 

accuracy and precision levels than those of S4, 

S5, S6, and S7. There was superiority in the 

performance of strategies that used fewer 

average climate variables in the simulations, 

and strategy S1 (c = 0.92, MAE = 204 kg ha-1, 

RMSE = 58 kg ha-1) was the best, followed by 

strategy S2 (c = 0.86, MAE = 267 kg ha-1, 

RMSE = 76 kg ha-1). These results are similar 

to those found by Duarte (2018), who used a 

historical series of meteorological data from 

1980 to 2010 and average data for 30 years for 

each day and tested harvest forecast strategies 

for first and second maize harvests with average 

data at 5, 25, 45, 65, and 85 days from harvest. 

The best performing strategy was 5 days, and 

the worst was 85 days.
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Table 2. Performance of different strategies for predicting the productivity of off-season maize for 

planting on January 25th in Jataí, GO, Brazil. 

Strategy R² d c 
ME MAE RMSE 

 kg ha-1
 

S1 0.90 0.97 0.92 128 204 58 

S2 0.83 0.94 0.86 183 267 76 

S3 0.49 0.79 0.55 396 513 158 

S4 0.03 0.34 0.06 313 745 168 

S5 0.01 0.32 0.03 384 816 178 

S6 0.02 0.35 0.05 397 791 180 

S7 0.00 0.38 0.00 397 774 176 

S8 0.50 0.37 0.26 412 781 177 

 

In contrast, strategies S4, S5, S6, S7, 

and S8 performed the worst, with the "c" index 

ranging from zero to 0.6 and the RMSE from 

168 kg ha-1 to 180 kg ha-1. Bannayan, Crout and 

Hoogenboom (2003) employed a combination 

of daily meteorological data generated by the 

SIMMETEO meteorological data generator 

integrated with the DSSAT platform to forecast 

wheat yield during the milky grain stage. Their 

study revealed that, as the simulations were 

conducted at later stages, the errors decreased. 

Specifically, RMSE values exceeded 950 kg ha-

1 for simulations performed 132 days after 

sowing, but were below 700 kg ha-1 for 

simulations carried out 244 days after sowing. 

In a study conducted by Monteiro et al. 

(2017) in southern Brazil, maize productivity 

was estimated using relatively simple 

agrometeorological models based on the 

technological level of the production systems. 

The authors observed a strong correlation 

between the estimated and observed 

productivity, with coefficient of determination 

(R²) values ranging from 0.76 to 0.92 (p<0.01). 

The mean absolute error (MAE) was less than 

70 kg ha-1, further indicating the accuracy of the 

predictions. In general, maize production can be 

predicted using crop models and climate 

forecasts; however, region-specific approaches 

may be required, as suggested by Ogutu et al. 

(2018). 

Strategies S1, S2, and S3, although with 

a smaller number of average climatic data, 

showed a trend towards greater variability and 

overestimation of simulated values, with mean 

errors ranging from 128 kg ha-1 to 396 kg ha-1. 

This is in partial agreement with the findings of 

Duarte (2018), who reported an overestimation 

of productivity in sowing between January and 

February, with mean errors ranging from 153 

kg ha-1 to 5038 kg ha-1. On the other hand, S1 

and S2 presented R², d and c higher than the 

other strategies, reaching values of 0.92 and 

0.86 for the c index, respectively. 

Our results suggest that the closer the 

harvest date, the better the performance in 

determining the yield, which was also observed 

by Chipanshi, Ripley and Lawford (1997) and 

Duarte (2018). Although the use of average data 

does not guarantee a long and safe period for 

forecasting maize productivity, it appears to be 

a practical and economical alternative (Duarte, 

2018) and can help in planning from storage to 

transportation of the crop. This allows for 

satisfactory forecasts of maize productivity up 

to 45 days before harvest, as demonstrated by 

Soler (2004) and Martins (2007). This strategy 

can predict, on the determined sowing date, 

maize productivity 30 days in advance, 

enabling decision-making support at a critical 

moment in maize harvesting and marketing. 

 

4 CONCLUSIONS 

 

The off-season maize sowing date with 

the highest attainable yield and lowest climate 

risk observed for the planting window period 

was January 25th. The strategies for predicting 

maize off-season yield indicated that the lower 

the number of remaining days between the 

prediction and harvest date, the better the 

performance. Strategy S2 showed the best 

performance, as it allowed the prediction of 

maize off-season yield 30 days ahead 

satisfactorily in the edaphoclimatic conditions 

of central Brazil. 



49                                                    Bongiovani et al./Off-season maize.../v38n3p42-52 (2023)                                       

 

 

 

5 ACKNOWLEDGMENTS 

 

This study was partially financed by the 

Coordination of Superior Level Staff 

Improvement - Brasil (CAPES) - Finance Code 

001. 

 

6 REFERENCES 

 

ANDARZIAN, B.; HOOGENBOOM, G.; 

BANNAYAN, M.; SHIRALI, M.; 

ANDARZIAN, B. Determining optimum 

sowing date of wheat using CSM-CERES-

Wheat model. Journal of the Saudi Society 

of Agricultural Sciences, Riyadh, v. 14, n. 2, 

p. 189-199, 2015. DOI: 

https://doi.org/10.1016/j.jssas.2014.04.004. 

Available at: 

https://www.sciencedirect.com/science/article/

pii/S1658077X14000307. Accessed on: 17 

Oct. 2023. 

 

ARAUS, J. L.; SERRET, M. D.; 

EDMEADES, G. O. Phenotyping maize for 

adaptation to drought. Frontiers in 

Physiology, Lausanne, v. 3, p. 1-20, 2012. 

DOI: 

https://doi.org/10.3389/fphys.2012.00305. 

Available at: 

https://www.frontiersin.org/articles/10.3389/fp

hys.2012.00305/full. Accessed on: 17 Oct. 

2023. 

 

BANNAYAN, M.; CROUT, N. M. J.; 

HOOGENBOOM, G. Application of the 

CERES‐wheat model for within‐season 

prediction of winter wheat yield in the United 

Kingdom. Agronomy Journal, Madison, v. 

95, n. 1, p. 114-125, 2003. DOI: 

https://doi.org/10.2134/agronj2003.1140a. 

Available at: 

https://acsess.onlinelibrary.wiley.com/doi/full/

10.2134/agronj2003.1140a. Accessed on: 17 

Oct. 2023. 

 

BANNAYAN, M.; REZAEI, E. E.; 

HOOGENBOOM, G. Determining optimum 

planting dates for rainfed wheat using the 

precipitation uncertainty model and adjusted 

crop evapotranspiration. Agricultural Water 

Management, Amsterdam, v. 126, p. 56-63, 

2013. DOI: 

https://doi.org/10.1016/j.agwat.2013.05.001. 

Available at: 

https://www.sciencedirect.com/science/article/

pii/S0378377413001121. Accessed on: 17 Oct. 

2023. 

 

BATTISTI, R.; SENTELHAS, P. C. 

Improvement of soybean resilience to drought 

through deep root system in 

Brazil. Agronomy Journal, Madison, v. 109, 

n. 4, p. 1612-1622, 2017. DOI: 

https://doi.org/10.2134/agronj2017.01.0023. 

Available at: 

https://acsess.onlinelibrary.wiley.com/doi/full/

10.2134/agronj2017.01.0023. Accessed on: 17 

Oct. 2023. 

 

BATTISTI, R.; BENDER, F. D.; 

SENTELHAS, P. C. Assessment of different 

gridded weather data for soybean yield 

simulations in Brazil. Theoretical and 

Applied Climatology, Wien, v. 135, p. 237-

247, 2019. DOI: 

https://doi.org/10.1007/s00704-018-2383-y. 

Available at: 

https://link.springer.com/article/10.1007/s0070

4-018-2383-y. Accessed on: 17 Oct. 2023. 

 

BENDER, F. D. Mudanças climáticas e seus 

impactos na produtividade da cultura de 

milho e estratégias de manejo para 

minimização de perdas em diferentes 

regiões brasileiras. 2017. Tese (Doutorado 

em Engenharia de Sistemas Agrícolas) - 

Escola Superior de Agricultura “Luiz de 

Queiroz”, Universidade de São Paulo, 

Piracicaba, 2017. DOI: 

https://doi.org/10.11606/T.11.2017.tde-

20102017-084031. Available at: 

https://www.teses.usp.br/teses/disponiveis/11/

11152/tde-20102017-084031/pt-br.php. 

Accessed on: 17 Oct. 2023. 

 

BENDER, F. D.; SENTELHAS, P. C. Solar 

radiation models and gridded databases to fill 

gaps in weather series and to project climate 

change in Brazil. Advances in Meteorology, 

London, v. 2018, p. 1-15, 2018. DOI: 



Bongiovani et al./Off-season maize.../v38n3p42-52 (2023)                                               50                                                     

 

https://doi.org/10.1155/2018/6204382. 

Available at: 

https://www.hindawi.com/journals/amete/2018

/6204382/. Accessed on: 17 Oct. 2023. 

 

BERGAMASCHI, H.; DALMAGO, G. A.; 

BERGONCI, J. I.; BIANCHI, C. A. M.; 

MÜLLER, A. G.; COMIRAN, F.; HECKLER, 

B. M. M. Water supply in the critical period of 

maize and the grain production. Pesquisa 

Agropecuária Brasileira, Brasília, DF, v. 39, 

n. 9, p. 831-839, 2004. DOI: 

https://doi.org/10.1590/S0100-

204X2004000900001. Available at: 

https://www.scielo.br/j/pab/a/rkfY676L3qKK

HBZCLySRDYR/. Accessed on: 17 Oct. 2023. 

 

BINDRABAN, P.; STOORVOGEL, J. J.; 

JANSEN, D. M.; VLAMING, J.; GROOT, J. 

J. R. Land quality indicators for sustainable 

land management: proposed method for yield 

gap and soil nutrient balance. Agriculture, 

Ecosystems & Environment, Amsterdam, v. 

81, n. 2, p. 103-112, Oct. 2000. DOI: 

https://doi.org/10.1016/S0167-8809(00)00184-

5. Available at: 

https://www.sciencedirect.com/science/article/

pii/S0167880900001845. Accessed on: 17 Oct. 

2023. 

 

CAMARGO, A. P. de; SENTELHAS, P. C. 

Performance evaluation of different potential 

evapotrasnpiration estimating methods in the 

State of São Paulo, Brazil. Revista Brasileira 

de Agrometeorologia, Santa Maria, v. 5, n. 1, 

p. 89-97, 1997. Available at: 

http://www.leb.esalq.usp.br/agmfacil/artigos/ar

tigos_sentelhas_1997/1997_RBAgro_5(1)_89-

97_ETPM%E9todosSP.pdf. Accessed on: 17 

Oct. 2023. 

 

CHIPANSHI, A. C.; RIPLEY, E. A.; 

LAWFORD, R. G. Early prediction of spring 

wheat yields in Saskatchewan from current 

and historical weather data using the CERES-

Wheat model. Agricultural and Forest 

Meteorology, Amsterdam, v. 84, n. 3/4, p. 

223-232, 1997. DOI: 

https://doi.org/10.1016/S0168-1923(96)02363-

5. Available at: 

https://www.sciencedirect.com/science/article/

pii/S0168192396023635. Accessed on: 17 Oct. 

2023. 

 

DUARTE, Y. C. N. Modelos de simulação da 

cultura do milho: uso na determinação das 

quebras de produtividade (Yield Gaps) e na 

previsão de safra da cultura no Brasil. 2018. 

Dissertação (Mestrado em Engenharia de 

Sistemas Agrícolas) - Escola Superior de 

Agricultura “Luiz de Queiroz”, Universidade 

de São Paulo, Piracicaba, 2018. DOI: 

https://doi.org/10.11606/D.11.2018.tde-

15052018-104958. Available at: 

https://teses.usp.br/teses/disponiveis/11/11152/

tde-15052018-104958/es.php. Accessed on: 17 

Oct. 2023. 

 

FAOSTAT. Data-Dataset-Crops-National 

production. Rome: Food and Agriculture 

Organization of the United Nations, 2023. 

Available at: 

https://data.apps.fao.org/catalog/dataset/crop-

production-yield-harvested-area-global-

national-annual-faostat. Accessed on: 17 Oct. 

2023. 

 

FERMONT, A. M.; VAN ASTEN, P. J.; 

TITTONELL, P.; VAN WIJK, M. T.; 

GILLER, K. E. Closing the cassava yield gap: 

an analysis from smallholder farms in East 

Africa. Field Crops Research, Amsterdam, v. 

112, n. 1, p. 24-36, 2009. DOI: 

https://doi.org/10.1016/j.fcr.2009.01.009. 

Available at: 

https://www.sciencedirect.com/science/article/

pii/S0378429009000343. Accessed on: 17 Oct. 

2023. 

 

GARCIA, R. A.; CECCON, G.; SUTIER, G. 

A. D. S.; SANTOS, A. L. F. D. Soybean-corn 

succession according to seeding 

date. Pesquisa Agropecuária Brasileira, 

Brasília, DF, v. 53, n. 01, p. 22-29, 2018. DOI: 

https://doi.org/10.1590/S0100-

204X2018000100003. Available at: 

https://www.scielo.br/j/pab/a/Tg6wBNmYW4

xLXXLCQnxcb7w/?lang=en. Accessed on: 17 

Oct. 2023. 

 

GONG, F.; WU, X.; ZHANG, H.; CHEN, Y.; 

WANG, W. Making better maize plants for 



51                                                    Bongiovani et al./Off-season maize.../v38n3p42-52 (2023)                                       

 

sustainable grain production in a changing 

climate. Frontiers in Plant Science, 

Lausanne, v. 6, p. 1-6, 2015. DOI: 

https://doi.org/10.3389/fpls.2015.00835. 

Available at: 

https://www.frontiersin.org/articles/10.3389/fp

ls.2015.00835/full. Accessed on: 17 Oct. 2023. 

 

HOOGENBOOM, G.; PORTER, C. H.; 

BOOTE, K. J.; SHELIA, V.; WILKENS, P. 

W.; SINGH, U.; WHITE, J. W.; ASSENG, S.; 

LIZASO, J. I.; MORENO, L. P.; PAVAN, W.; 

OGOSHI, R.; HUNT, L. A.; TSUJI, G. Y.; 

JONES, J. W. The DSSAT crop modeling 

ecosystem. In: BOOTE, K. J. (ed.). Advances 

in crop modelling for a sustainable 

agriculture. Cambridge: Burleigh Dodds 

Science Publishing, 2019. p. 173-216. 

 

JONES, J. W.; HOOGENBOOM, G.; 

PORTER, C. H.; BOOTE, K. J.; 

BATCHELOR, W. D.; HUNT, L. A.; 

WILKENS, P. W.; SINGH, U.; GIJSMAN, A. 

J.; RITCHIE, J. T. The DSSAT cropping 

system model. European Journal of 

Agronomy, Amsterdam, v. 18, n. 3/4, p. 235-

265, 2003. DOI: 

https://doi.org/10.1016/S1161-0301(02)00107-

7. Available at: 

https://www.sciencedirect.com/science/article/

pii/S1161030102001077. Accessed on: 17 Oct. 

2023. 

 

MARTINS, M. A. Estimativa da 

produtividade da cultura do milho no 

semiárido brasileiro, com base no modelo 

Aquacrop e previsão climática sazonal. 

2007. Dissertação (Mestrado em 

Meteorologia) – Instituto Nacional de 

Pesquisas Espaciais, São José dos Campos, 

2007. Available at: http://mtc-

m21b.sid.inpe.br/col/sid.inpe.br/mtc-

m21b/2017/03.09.13.39/doc/thisInformationIte

mHomePage.html. Accessed on: 17 Oct. 2023. 

 

MONTEIRO, J. E. B. A.; ASSAD, E. D.; 

SENTELHAS, P. C.; AZEVEDO, L. D. C. 

Modeling of corn yield in Brazil as a function 

of meteorological conditions and technological 

level. Pesquisa Agropecuária Brasileira, 

Brasília, DF, v. 52, n. 3, p. 137-148, 2017. 

DOI: https://doi.org/10.1590/S0100-

204X2017000300001. Available at: 

https://www.scielo.br/j/pab/a/XhvTsnSNCfcd

Zc5PHR9mx4y/?lang=en. Accessed on: 17 

Oct. 2023. 

 

OGUTU, G. E.; FRANSSEN, W. H.; SUPIT, 

I.; OMONDI, P.; HUTJES, R. W. Probabilistic 

maize yield prediction over East Africa using 

dynamic ensemble seasonal climate forecasts. 

Agricultural and Forest Meteorology, 

Amsterdam, v. 250/251, p. 243-261, 2018. 

DOI: 

https://doi.org/10.1016/j.agrformet.2017.12.25

6. Available at: 

https://www.sciencedirect.com/science/article/

pii/S0168192317306767. Accessed on: 17 Oct. 

2023. 

 

OLIVEIRA, L. A. de; MIRANDA, J. H. de; 

COOKE, R. A. C. Water management for 

sugarcane and corn under future climate 

scenarios in Brazil. Agricultural Water 

Management, Amsterdam, v. 201, p. 199-206, 

2018. DOI: 

https://doi.org/10.1016/j.agwat.2018.01.019. 

Available at: 

https://www.sciencedirect.com/science/article/

pii/S0378377418300696. Accessed on: 17 Oct. 

2023. 

 

PEGORARE, A. B.; FEDATTO, E.; 

PEREIRA, S. B.; SOUZA, L. C.; FIETZ, C. R. 

Supplemental irrigation in the cycle of 

"safrinha" corn under no-tillage 

system. Revista Brasileira de Engenharia 

Agrícola e Ambiental, Campinas Grande, v. 

13, n. 3, p. 262-271, 2009. DOI: 

https://doi.org/10.1590/S1415-

43662009000300007. Available at: 

https://www.scielo.br/j/rbeaa/a/zy9jJydJKjtWq

hLgMVRgW6K/?lang=pt. Accessed on: 17 

Oct. 2023. 

 

SCHAUBERGER, B.; ARCHONTOULIS, S.; 

ARNETH, A.; BALKOVIC, J.; CIAIS, P.; 

DERYNG, D.; ELLIOTT, J.; FOLBERTH, C.; 

KHABAROV, N.; MÜLLER, C.; PUGH, 

T.A.; ROLINSKI, S.; SCHAPHOFF, S.; 

SCHMID, E.; WANG, X.; SCHLENKER, W.; 

FRIELER, K. Consistent negative response of 



Bongiovani et al./Off-season maize.../v38n3p42-52 (2023)                                               52                                                     

 

US crops to high temperatures in observations 

and crop models. Nature Communications, 

London, v. 8, n. 1, p. 13931, 2017. DOI: 

https://doi.org/10.1038/ncomms13931. 

Available at: 

https://www.nature.com/articles/ncomms1393

1. Accessed on: 17 Oct. 2023. 

 

SENTELHAS, P. C.; BATTISTI, R.; 

CÂMARA, G. M. S.; FARIAS, J. R. B.; 

HAMPF, A. C.; NENDEL, C. The soybean 

yield gap in Brazil–magnitude, causes and 

possible solutions for sustainable 

production. The Journal of Agricultural 

Science, Cambridge, v. 153, n. 8, p. 1394-

1411, 2015. DOI: 

https://doi.org/10.1017/S0021859615000313. 

Available at: 

https://www.cambridge.org/core/journals/journ

al-of-agricultural-science/article/soybean-

yield-gap-in-brazil-magnitude-causes-and-

possible-solutions-for-sustainable-

production/DB059CC032A27B7C5A07FF896

F56E8D5. Accessed on: 17 Oct. 2023. 

 

SOLER, C. M. T. Uso do modelo CERES-

Maize para previsão de safra do milho 

“safrinha”. 2004. Tese (Doutorado em 

Irrigação e Drenagem) - Escola Superior de 

Agricultura “Luiz de Queiroz”, Universidade 

de São Paulo, Piracicaba, 2004. DOI: 

https://doi.org/10.11606/T.11.2004.tde-

09112004-164934. Available at: 

https://www.teses.usp.br/teses/disponiveis/11/

11143/tde-09112004-164934/pt-br.php. 

Accessed on: 17 Oct. 2023. 

 

WALLACH, D.; MAKOWSKI, D.; JONES, J. 

W.; BRUN, F. Working with dynamic crop 

models: Methods tools and examples for 

agriculture and environment. London: 

Academic Press, 2013. 

 

WILLMOTT, C. J. Some comments on the 

evaluation of model performance. Bulletin of 

the American Meteorological Society, 

Boston, v. 63, n. 11, p. 1309-1313, 1982. DOI: 

https://doi.org/10.1175/1520-

0477(1982)063<1309:SCOTEO>2.0.CO;2. 

Available at: 

https://journals.ametsoc.org/view/journals/bam

s/63/11/1520-

0477_1982_063_1309_scoteo_2_0_co_2.xml. 

Accessed on: 17 Oct. 2023. 

 

XAVIER, A. C.; KING, C. W.; SCANLON, 

B. R. Daily gridded meteorological variables 

in Brazil (1980–2013). International Journal 

of Climatology, Oxford, v. 36, n. 6, p. 2644-

2659, 2016. DOI: 

https://doi.org/10.1002/joc.4518. Available at: 

https://rmets.onlinelibrary.wiley.com/doi/full/1

0.1002/joc.4518. Accessed on: 17 Oct. 2023.

 


